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Insect outbreaks cause significant tree mortality across western North America,

including in high-elevation whitebark pine forests. These forests are under

several threats, which include attack by insects and white pine blister rust, as

well as conversion to other tree species as a result of fire suppression. Mapping

tree mortality is critical to determining the status of whitebark pine as a

species. Satellite remote sensing builds upon existing aerial surveys by using

objective, repeatable methods that can result in high spatial resolution mon-

itoring. Past studies concentrated on level terrain and only forest vegetation

type. The objective of this study was to develop a means of classifying white-

bark pine mortality caused by a mountain pine beetle infestation in rugged,

remote terrain using high spatial resolution satellite imagery. We overcame

three challenges of mapping mortality in this mountainous region: (1) separat-

ing non-vegetated cover types, green and brown herbaceous cover, green (live)

tree cover, and red-attack (dead) tree cover; (2) variations in illumination as a

result of variations in slope and aspect related to the mountainous terrain of

the study site; and (3) the difficulty of georegistering the imagery for use in

comparing field measurements. Quickbird multi-spectral imagery (2.4 m spatial

resolution) was used, together with a maximum likelihood classification

method, to classify vegetation cover types over a 6400 ha area. To train the

classifier, we selected pixels in each cover class from the imagery guided by our

knowledge of the study site. Variables used in the maximum likelihood classi-

fier included the ratio of red reflectance to green reflectance as well as green

reflectance. These variables were stratified by solar incidence angle to account

for illumination variability. We evaluated the results of the classified image

using a reserved set of image-derived class members and field measurements of

live and dead trees. Classification results yielded high overall accuracy (86%

and 91% using image-derived class members and field measurements respec-

tively) and kappa statistics (0.82 and 0.82) and low commission (0.9% and

1.5%) and omission (6.5% and 15.9%) errors for the red-attack tree class.

Across the scene, 700 ha or 31% of the forest was identified as in the red-

attack stage. Severity (percent mortality by canopy cover) varied from nearly

100% for some areas to regions with little mortality. These results suggest that

high spatial resolution satellite imagery can provide valuable information for

mapping and monitoring tree mortality even in rugged, mountainous terrain.
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1. Introduction

Outbreaks of mountain pine beetle (Dendroctonus ponderosae Hopkins) affect large

areas in western North America. In recent years, these insects have killed trees in .1

million ha in the western USA (USDA Forest Service 2005) and 9 million ha in

western Canada (British Columbia Ministry of Forests and Range 2007). Future

outbreaks will likely be extensive and severe in western North America. Over 8 million

ha of western forests are at a high risk of mortality caused by bark beetles, including

mountain pine beetle (USDA Forest Service 2002), and 46% of the lodgepole pine in

the USA has stand conditions that are highly susceptible to mountain pine beetle
attack (Hicke and Jenkins 2008). Projections of future warming will enhance climate

suitability for mountain pine beetle epidemics in high-elevation pine ecosystems

(Logan and Bentz 1999, Logan et al. 2003, Hicke et al. 2006). Tree mortality asso-

ciated with insect disturbance has numerous ecosystem impacts, including carbon

cycling (Romme et al. 1986, Kurz and Apps 1999, Kurz et al. 2008), streamflow

(Bethlahmy 1974), fire (Romme et al. 2006, Jenkins et al. 2008) and wildlife habitat

(Chan-McLeod 2006).

Mountain pine beetles typically attack lodgepole pine (Pinus contorta), ponderosa
pine (Pinus ponderosa), and other pines, such as whitebark pine (Pinus albicaulis)

(Amman and Cole 1983). Needles on successfully attacked and killed trees begin to

fade the following spring and summer, turning bright red then falling off in 3–5 years.

Trees progress through unattacked, green-attack (attacked but needles still green), red-

attack (dead, needles red), and grey-attack (dead, needles off) stages (Safranyik and

Carroll 2006). In this study, we focus on identifying forest cover in the red-attack stage.

Whitebark pine is a foundation species of high-elevation ecosystems in the western

USA. Whitebark pine serves a variety of ecological roles, including providing food
resources for grizzly bears, squirrels and birds and modifying hydrological processes

through effects on snowpack. Whitebark pine is currently subjected to numerous

threats, which include epidemics of mountain pine beetle, white pine blister rust and,

in some places, conversion to later seral species resulting from fire suppression (Keane

and Arno 1993, Logan and Powell 2001).

Until recently, whitebark pine ecosystems were usually too cold to support frequent

mountain pine beetle epidemics. However, during warmer periods, such as the

1930–1940s, mountain pine beetle populations reached epidemic levels (Perkins and
Swetnam 1996, Logan and Powell 2001). In 2005 alone, mountain pine beetles attacked

over 170 000 ha of whitebark pine surveyed by the USDA Forest Service in the Greater

Yellowstone Ecosystem (Gibson 2006). Other areas of whitebark pine are also infested,

including locations throughout Idaho. Ongoing warming today is thought to be

responsible (Logan and Powell 2001, in press), and projections of mountain pine beetle

activity at high elevations that are driven by climate change forecasts suggest continued

optimal conditions for outbreak for many decades (Hicke et al. 2006).

Two sources of information can be useful for mapping insect outbreaks across a
landscape. The USDA Forest Service annually surveys forests for insect and disease

damage, producing maps and attribute information. From fixed-wing aircraft, obser-

vers visually identify areas of insect and disease damage, together with an estimate of

the number of trees affected. Although a rich resource, these Aerial Detection Surveys

have disadvantages for ecological studies. Many areas are flown annually, though

some areas can be missed, and wildernesses and national parks are not surveyed

regularly. Traditionally, surveys have focused on valued timber species; only recently
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have the surveys included additional tree species, such as whitebark pine. The method

involves an observer mapping damage and, as such, is subjective and not repeatable,

although with experienced observers the accuracy of detection and location of out-

breaks can be high (Van Sickle 1995). Though suitable for the Forest Service purposes

of early warning and general trends, the spatial resolution of the mortality locations is
too coarse for many ecological studies.

The usefulness of remote sensing imagery in studying forest mortality resulting from

outbreaks is widely recognized (Radeloff et al. 1999, Franklin et al. 2003, Skakun et al.

2003, Wulder et al. 2006). However, insect-caused mortality is more difficult to detect

from space than other forest disturbances, such as fire or clear-cutting. Outbreaks leave

living younger trees, non-host species and the understorey, resulting in a mixture of

reflectances from live and dead trees. A major factor influencing the ability of remotely

sensed data to detect infestation is the spatial resolution of the imagery. Past studies of
detection using remote sensing have indicated that finer spatial resolution results in

fewer pixels with mixed live and killed trees, facilitating detection (e.g. Kneppeck and

Ahern 1989, Wulder et al. 2006). Recent studies using high spatial resolution (2–4 m)

satellite imagery have demonstrated success in mapping red-attack damage resulting

from mountain pine beetle outbreaks (White et al. 2005, Coops et al. 2006, Wulder et al.

2008). These studies have been conducted in relatively level terrain in British Columbia

in areas of extensive forest cover.

Satellite remote sensing is a particularly valuable monitoring tool in whitebark pine
stands for three reasons. First, whitebark pines are often located in national parks and

wildernesses, areas not regularly flown by aerial surveys but available to satellites.

Secondly, the remote, rugged terrain characterizing whitebark pine stands is difficult to

survey with ground-based methods. Thirdly, mortality mapped with satellite imagery can

be characterized continuously across a landscape at potentially high spatial resolution.

Our overall goal is to develop the means of mapping mountain pine beetle-caused tree

mortality in rugged, remote areas for monitoring the status of whitebark pine. In this

paper, we describe a classification of satellite imagery to identify whitebark pine mortality
resulting from mountain pine beetle attack at Railroad Ridge in central Idaho, USA. The

mountain pine beetle infestation began in the area around 2003 and is ongoing. Our

specific objectives were to (1) develop a classification method for mapping mortality in

whitebark pine stands, (2) evaluate the classification using image-derived information

and field measurements and (3) report the total area of mortality both in absolute area as

well as a percentage of total forest. We focused on live (green) and dead (red-attack) tree

cover. Our study builds upon previously published reports of mapping tree mortality

following insect attack by developing and applying methods for use in mountainous
terrain. We addressed three challenges for such areas: (1) separating non-vegetated

surfaces, green and brown herbaceous cover, green (live) tree cover, and red-attack

(dead) tree cover using the imagery (due to the lack of ancillary information); (2)

variations in illumination that result from highly variable slope and aspect; and (3) the

difficulty of georegistering the imagery in this rugged terrain, which led to uncertainty in

comparing classification results with field observations.

2. Study region

The study site is centred on Railroad Ridge, Idaho, USA (44.140�N, 114.556�W) in

the White Cloud Peaks area east of Stanley, Idaho (figure 1). The region is character-

ized by remote, rugged terrain. Elevations range from 2042 m to above treeline at 3505 m,

Mapping whitebark pine mortality with satellite imagery 4429
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with slopes averaging 23� and a ranging from 0� to .60� (figure 2). Land-cover types

across the study site include lakes, talus/rock, herbaceous vegetation in alpine and

subalpine meadows, and coniferous forest. Lodgepole pine occurs at lower elevations,

whitebark pine dominates forests at higher elevations up to treeline, and subalpine fir
is present in low densities.

The ongoing mountain pine beetle outbreak at Railroad Ridge began in 2003, with

increasing mortality in each subsequent year, according to visual estimates. Mountain

pine beetles have killed both whitebark pine as well as lodgepole pine within the study site.

3. Methods

3.1 Image preprocessing

A Quickbird multi-spectral image was acquired on 13 July 2005, at Railroad Ridge

over an 8 km by 8 km region. The imagery has a spatial resolution of 2.4 m for the

multi-spectral bands (blue, green, red, near-infrared) and a view zenith angle of 2.4�.
The scene was mostly clear, with a small amount of cloud in the south-east corner.

Orthorectification and georegistration were performed with the Environment for

Visualization Images (ENVI) software package using rational polynomial coefficients

provided with the Quickbird imagery together with field-measured ground control

points and a digital elevation model (DEM). Two issues made orthorectification and

geolocation challenging in this scene. First, regular, human-produced features, such

as paved roads, fences and buildings that facilitate identification on imagery, were not

Figure 1. Study site: Railroad Ridge in central Idaho, USA (44.140�N, 114.556�W) (star).
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present in this landscape. Secondly, this region is characterized by complex terrain

with steep mountains and substantial gradients in elevation. Twenty-three ground

control points distributed across the scene were taken at (one-lane, unpaved) road

intersections, stream crossings and solitary trees and logs with a Trimble Pathfinder

Pro XRS Global Positioning System (GPS) receiver. Differential correction was

applied to these points. We downloaded 10 m United States Geological Survey
(USGS) DEMs for the region, then linearly interpolated the 10 m grid cells to

match the 2.4 m spatial resolution of the satellite imagery for use in the orthorectifica-

tion. An assessment of pre- and post-orthorectification positions of these points

revealed a rms. error of 2.1 pixels or 5.0 m. Comparisons of field GPS points with

USGS digital orthophotographs revealed similar errors in the orthophotographs.
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Figure 2. (a) Elevation frequency distribution at Railroad Ridge; (b) slope frequency distribu-
tion; (c) solar incidence angle (SIA; defined as the angular difference between the Sun and a
perpendicular to the local surface) frequency distribution; and (d) map of SIA across study site.
The study region consists of rugged, mountainous terrain, which influences solar illumination
and orthorectification.
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Top-of-atmosphere digital numbers were converted to top-of-atmosphere spectral

reflectances using the spectral response and calibration coefficients of each band and

the solar spectrum. Top-of-canopy reflectances were estimated from these reflec-

tances using the 6S radiative transfer model (Vermote et al. 1997) assuming a standard

US atmospheric profile. Although not needed for the classification, this step facili-
tated interpretation of the reflectance spectra.

From the mosaicked DEM and the position of the Sun at the time of image

acquisition, we calculated the ‘solar incidence angle’ (SIA) that characterized the

angular difference between a local perpendicular at each pixel and the incoming

solar radiation:

cos SIA ¼ cos� cos � � sin� sin � sin� (1)

where � is the solar zenith angle, � is the slope and � is the solar azimuth angle. SIA
was used in the classification to capture the variations in reflectance resulting from

variability in slope and aspect. We designated five SIA bins across the study region:

0–15�, 15–30�, 30–45�, 45–60� and 60–75�.

3.2 Image classification

We first removed cover types other than vegetation (rock, water, cloud) from

consideration by applying a minimum normalized difference vegetation index
(NDVI) threshold (figure 3 shows a flow diagram of the classification process).

Based on visual inspection of the imagery and our knowledge of the study site, we

retained for use in subsequent analysis only those pixels whose NDVI�0.22. Since

Figure 3. Flow diagram of classification of Quickbird imagery to yield locations of green and
brown herbaceous vegetation and green and red-attack tree cover. RGI, red–green index;
DEM, digital elevation model.
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areas of cloud and water had NDVI values greater than this threshold, we also applied

a minimum threshold of 0.01 for the reflectance of red band to remove these addi-

tional areas.

Next, we used a maximum likelihood classification method to identify four

vegetation classes: green and brown herbaceous cover, and green (live) and red-
attack (dead) tree cover. We began by selecting pixels from the imagery to build

training and evaluation datasets for use in the classification. Using our local

knowledge of the vegetation at the study site and the satellite imagery displayed

in true colour, we visually selected pixels (‘class members’) of each vegetation class

from the imagery. We ensured representation of these pixels across the five SIA

bins described above. We then randomly selected two-thirds of the points for

model training and reserved the remaining third for model evaluation. Random

selection considered SIA (five bins) as well as the two variables used in the
maximum likelihood classification (the red–green index, RGI, and the green

reflectance, Rg (see below); four equal-sized bins of each). This stratification

among 5 · 4 · 4 = 80 bins ensured representation across the range of these three

variables for model training and evaluation.

RGI alone has been used successfully to separate the red-attack from live tree

locations, and was found to be superior to NDVI for this discrimination (Coops

et al. 2006). However, our study region included herbaceous vegetation in addition to

trees, and no ancillary data existed that would have allowed us to mask out non-forest
areas. RGI does not discriminate between herbaceous and tree cover classes (figure 4).

Therefore, we added the green reflectance (Rg) as a classification variable, which

allowed us to separate herbaceous vegetation from tree cover (figure 4).

These two variables (RGI, Rg) were used in the maximum likelihood classifica-

tion of the Quickbird imagery (Richards and Jia 2006). Class means were com-

puted used the training set of image-derived class members. However, we found

Figure 4. Green reflectance versus the ratio of red to green reflectance (RGI, red–green index)
for the four image-derived class members. Class members are limited to those with solar
incidence angles (SIA) between 0� and 15�. Note that RGI alone is insufficient for distinguish-
ing brown herbaceous cover from red and green tree cover, but that the addition of green
reflectance permits this separation.
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that these class means varied with SIA (figure 5). Rg decreased as SIA increased in

response to reduced illumination and increased shadowing. RGI also decreased,

though it was less sensitive than Rg. To account for this variability in the training
datasets caused by changing SIA, we performed one maximum likelihood classi-

fication for each of the five SIA bins. That is, we selected training class members

and imagery pixels within a given SIA bin to perform each classification; we then

repeated this step for each SIA bin.

After performing the classification, we noted a significant number of small patches

of red-attack pixels. Coops et al. (2006) reported a mean crown radius of 1.7 m for

lodgepole pine in British Columbia and, therefore, used four Quickbird pixels to

represent a crown. Whitebark pine crowns are typically larger; one study reported
crown diameters between 4.7 and 12.1 m, with a mean of 8.5 m (Caylor et al. 2002).

We therefore removed patches containing fewer than four pixels from consideration.

Instead of the red-attack class, we assigned the second-most likely class to these pixels.

3.3 Classification evaluation

We used two methods of evaluating the classification because each method has

advantages and disadvantages, and a combination of the two increases the confidence
of our results. Image-derived class members provided a large number of locations for

evaluation, but relied upon visual selection from the Quickbird imagery. Field mea-

surements quantified tree condition from ground-based observations but rectification

with the imagery was difficult.

The reserved set (third of total) of image-derived class members was used to

evaluate the classification. Since the numbers of pixels in each class varied substan-

tially, we limited each class to 462 pixels, the number in the red-attack class, by

Figure 5. Green reflectance versus the ratio of red to green reflectance (RGI, red-green index)
for means of the four image-derived classes stratified by solar incidence angle (SIA). Numbers
indicate lower SIA of each SIA bin: 0: 0–15�; 15: 15–30�; 30: 30–45�; 45: 45–60�; 60: 60–75�.
Class means of RGI and green reflectances vary with SIA, implying that SIA needed to be
accounted for in the classification process.
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random selection. An error matrix was calculated using pixels from the classification

results compared with the image-derived class members. We report overall accuracy,

the kappa statistic, user’s and producer’s accuracy, and percent commission and

omission errors.

In addition, field measurements were used for evaluation. Coordinates of 207 green
(live) and 232 red (dead) trees were taken throughout the study site with the Trimble

GPS receiver in September 2005. Tree coordinates were measured in plots established

for studying mountain pine beetle populations as well as in a variety of slope-aspect

combinations. We followed a protocol that measured coordinates 1 m from the south

side of each tree bole. Differential correction was applied after the field trip; reported

horizontal precision was typically ,1 m. Information about each tree, incuding

species, condition (live or dead) and colour (green, red, grey; only green and red

trees were used in this study), was recorded.
We developed an accuracy assessment approach to compare GPS points of live and

dead trees with the satellite classification. We needed to consider a number of issues

that led to uncertainties in the comparisons. These issues included (listed in order of

importance): (1) orthorectification rms. error of two pixels; (2) variations in crown

orientation with respect to the base of the stem, which can be particularly large in

whitebark pine when, as we regularly observed, multiple mature stems originated

within a small area on the ground from bird caches; (3) precision of the GPS points

(typically ,1 m); and (4) variations in crown width. These issues implied that directly
comparing a GPS point with the overlying satellite pixel might not be a meaningful

test. Therefore, with the orthorectification uncertainty of two pixels as a guide, we

used an image window of 5 · 5 pixels to look for a match between the ground-recorded

tree condition (live or dead) and satellite classification within each window. White

et al. (2005) used a similar method for accuracy assessment by adding a buffer around

ground observations to account for positional errors in 4 m IKONOS imagery.

A similar analysis of the resulting error matrix as for the image-derived evaluation

dataset was performed.

4. Results

From our classification of Railroad Ridge Quickbird imagery, we estimated 2264

ha of total forest (green/live plus red/dead) across the 6400 ha scene (35%). The

remainder of the scene consisted of large areas of non-vegetation cover types,

mostly rock, and brown herbaceous cover, with a small amount of green herbac-

eous cover (figure 6).
We found 700 ha of forest in the red-attack stage killed by mountain pine beetle, or

31% of the total forest area. Much of the mortality was in the north-central and north-

eastern parts of the scene. Less mortality occurred in the north-western region.

However, we identified some red-attack areas in stands throughout most of the scene.

The evaluation against image-derived class members yielded an overall accuracy of

86% and a kappa statistic value of 0.82 (table 1). Focusing on the red-attack class – the

object of this study – we found low commission errors (0.9%) and omission errors

(6.5%). The brown herbaceous cover type had similarly low commission and omission
errors. The green herbaceous and green tree cover types had larger errors, implying

that the classification method did not distinguish these two classes well.

Comparisons of the classified imagery with field observations of green and red trees

resulted in an overall accuracy of 91% and a kappa statistic value of 0.82. The

Mapping whitebark pine mortality with satellite imagery 4435
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commission error of red-attack trees was low (1.5%), and the omission error was low,

but slightly higher (15.9%). Errors primarily occurred because the classification

mistakenly assigned red-attack trees (as observed in the field) to the green tree cover

class.

5. Discussion

Our method satisfactorily separated the red-attack class from herbaceous and live tree

classes by using RGI, Rg, and SIA based on evaluations using image-derived class

members (table 1) and field observations (table 2). We found low omission and

commission errors for this cover type from both image-derived class members and

Figure 6. (a) True-colour Quickbird imagery of entire Railroad Ridge study site (8 km by
8 km). (b) Classification results of entire study site: light green: green herbaceous cover; yellow:
brown herbaceous cover; dark green: green (live) tree cover; red: red-attack tree cover. (c) Zoom
of true-colour imagery; region in black box in (a) shown. (d) Zoom of true-colour imagery;
region in black box in (c) shown. Green lines outline red-attack tree class (dashed lines indicate
holes). Imagery courtesy of DigitalGlobe Inc., Longmont CO, # 2005.
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field observations. Other cover types were less well distinguished. Green herbaceous

cover and green tree cover classes were most problematic due to their similar RGI and

Rg characteristics (figure 4). We did not distinguish between a live, unattacked tree

cover class and a green-attack tree cover class. In addition, we did not consider the

grey-attack stage; this topic will be addressed in future studies. The lack of including

green- and grey-attack classes suggests additional mortality across the scene that was
not captured by our methods.

A high degree of accuracy compared with the field observations of live and dead

trees was achieved once uncertainties in spatial positioning of the imagery and the

GPS points (relative to a tree’s crown) were included. Most significantly, the lack of

regularly shaped (e.g. rectangular), easily identified human features in this landscape,

lack of easy access, and steep topography reduced our ability to accurately and

precisely georegister the Quickbird imagery. We recognize that this method of using

a 5 · 5 window may overestimate the accuracy because of the possibility of including a
match not associated with the tree of interest.

Table 1. Error matrix using image-derived class members.

Reference (image-derived class
members)

Green
herb.

Brown
herb.

Green tree
cover

Red tree
cover Total

User’s
accuracy

(%)
Commission

error (%)

Classified
Green herb. 343 9 90 6 448 76.6 23.4
Brown herb. 61 429 3 5 498 86.1 13.9
Green tree cover 58 0 363 16 437 83.1 16.9
Red tree cover 0 0 4 432 436 99.1 0.9
Total 462 462 462 462 1819

Producer’s
accuracy (%)

74.2 92.9 78.6 93.5 Overall
accuracy

86.14%

Omission error (%) 25.8 7.1 21.4 6.5 kappa 0.82

Table 2. Error matrix using field measurements.

Reference (field measurements)

Green tree Red tree Other Total
User’s

accuracy (%)
Commission

error (%)

Classified
Green tree cover 204 35 0 239 85.4 14.6
Red tree cover 3 195 0 198 98.5 1.5
Othera 0 2 0 2 0.0 100.0
Total 207 232 0 439

Producer’s
accuracy (%)

98.6 84.1 - Overall
accuracy

90.9%

Omission error (%) 1.4 15.9 - kappa 0.82

aThe ‘other’ class includes non-vegetation and herbaceous cover types.
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In addition to location uncertainties, in the field we observed additional fading

between the time of Quickbird imagery acquisition (July) and fieldwork (September).

Visual assessment in the field identified some trees obviously green in the July true-

colour imagery that were red in September. This additional fading likely increased the

red-attack class omission error (table 2).
High accuracies have also been reported by studies using high-resolution satellite

imagery to map tree mortality following bark beetle attack. Coops et al. (2006) used

multi-spectral Quickbird imagery to classify red-attack trees. Individual spectral

bands as well as RGI and NDVI were evaluated. An iterative process determined

RGI and NDVI thresholds in conjunction with a dataset of attacked trees identified

from helicopter GPS points. The authors found that RGI was most successful in

separating the red-attack stage from unattacked (green) locations. White et al. (2005)

focused on the usefulness of satellite imagery to detect small, scattered spots of
infestation for suppression activities. They applied an unsupervised classification

approach, with later assignment of mortality classes using a calibration dataset of

interpreted aerial photos, to map mortality using IKONOS imagery (4 m spatial

resolution), and found accuracies of 71% and 92% for low and medium levels of

red-attack damage, respectively.

Our estimate of 31% mortality is a measure of trees with red foliage at the time of

the 2005 image we analysed. This estimate is low compared with other published field

observations of tree mortality following bark beetle attack. For example, Romme
et al. (1986) reported tree mortality rates of 41–67% following a mountain pine beetle

epidemic in the Greater Yellowstone Ecosystem. Other studies have found similarly

high mortality, particularly in the large tree size classes (Amman and Baker 1972,

Jorgensen and Mocettini 2005). Two likely reasons explain our lower estimates. First,

total whitebark pine mortality in this area will increase with the continuing outbreak

(as confirmed by field visits in 2006 and 2007). Secondly, our spatial extent was at the

landscape, not plot, scale. At finer scales in some locations, the imagery classification

resulted in much higher mortality rates (figure 6(d)). As larger areas contain more
unattacked stands, we would expect the severity to decrease as area increases. Thus, a

scene-wide 31% is likely a severe outbreak event. We note that because canopy cover –

what the satellite observes – is dominated by larger trees that are preferentially

attacked by mountain pine beetle, we might expect even higher mortality rates in

terms of canopy cover compared to number of trees for these field studies.

6. Conclusions

This study used high spatial resolution, multi-spectral Quickbird imagery acquired in

2005 to identify mountain pine beetle-caused mortality in a high-elevation whitebark

pine ecosystem in central Idaho, USA. We addressed multiple challenging aspects of

mapping mountain pine beetle-caused mortality to achieve an accurate classification.

Highly variable (i.e. discontinuous) forest canopy cover implied that the classification

method needed to account for herbaceous vegetation. To accomplish this, we used

RGI but also added the green reflectance (Rg). In addition, the mountainous terrain

caused substantial variability in solar incidence angle, which resulted in variations in
brightness within the region. Inclusion of the solar incidence angle in the image

classification accounted for these variations. Finally, the steep, rugged terrain and

minimal human influence on the landscape made spatial georegistration of the

satellite imagery with ground-based observations difficult. By adding a buffer around
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field measurements of dead and live trees, we accounted for uncertainties in image

registration.

The widespread area of outbreaks at the regional and continental scales in remote,

mountainous terrain poses challenges for mapping these important forest distur-

bances. Our results suggest that high-resolution satellite imagery can be used for
monitoring insect infestations and for landscape ecological studies of tree mortality

in these regions. Insect outbreaks have significant effects on ecosystem processes and

services, and mapping the extent of these disturbances is crucial for fully assessing

impacts.
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